# <u>1 – 100 MHz 6 dB Hybrid Coupler</u>

The couplers are commonly used to couple two or more different RF signals or divide an RF signal in different outputs a signal.

To do this with a three ports configuration you can typically use three methods:

- Wilkinson divider
- 3 dB splitter
- 6 db Hybrid

The Wilkinson is a 3 dB divider/combiner over the components losses. It's use is limited by a small bandwidth for which is designed.

It has high balance between outputs when closed on its correct load.

The 3-dB lumped elements splitter, have a broad band but it has a medium/poor insulation, 20-30 dB, between the two outputs. It has high balance between outputs when closed on its correct load.

The 6 dB Hybrid has a double attenuation compared to the other two solutions, but has a high separation between the two output ports, about 40-50 dB. The balance between the ports A and B is not perfect because the circuit is not symmetrical as in other cases.

The characteristics of the Hybrid Coupler makes it very good for precision measurements, such as two-tone measures, IP2 or when you need a high separation between the two outputs from a single generator.



6 dB Hybrid Coupler/Divider schematic

#### Test Bench

R1, 2 and 3 were made by placing two 100 Ohms 1% resistor in parallel. Measure it with a digital multi-meter to make sure to stay within 1% tolerance.

Obviously the most critical component is the transformer, in terms of the magnetic core, by the number of turns and the type of winding. Built It with two bifilar windings.

#### Port A and B

The port A is characterized by a strong resistive impedance component, while the B from inductive component, so the linearity' in the frequency response will be better for port A.



### Test set

### N30 AI 10000 Untwisted 6+6

| Freq<br>MHz         | 1    | 1.8  | 10   | 20   | 30   | 50   | 100  | Delta<br>value<br>dB |
|---------------------|------|------|------|------|------|------|------|----------------------|
| Port A<br>dB        | 6.04 | 6.05 | 6.06 | 6.08 | 6.07 | 6.03 | 5.96 | 0.12                 |
| Port B<br>dB        | 5.98 | 6.00 | 6.03 | 6.11 | 6.18 | 6.28 | 6.90 | 0.92                 |
| Delta A-<br>B dB    | 0.94 | 0.05 | 0.03 | 0.03 | 0.11 | 0.25 | 0.94 | 0.91                 |
| Isolation<br>A-B dB | 44.0 | 44.4 | 44.7 | 45.1 | 45.9 | 50.2 | 42.6 | 7.6                  |

### N30 AI 10000 Twisted 6+6

| Freq<br>MHz         | 1    | 1.8  | 10   | 20   | 30   | 50   | 100  | Delta<br>value<br>dB |
|---------------------|------|------|------|------|------|------|------|----------------------|
| Port A<br>dB        | 6.04 | 6.04 | 6.05 | 6.07 | 6.06 | 6.05 | 6.00 | 0.07                 |
| Port B<br>dB        | 6.00 | 6.00 | 6.02 | 6.09 | 6.14 | 6.20 | 6.65 | 0.65                 |
| Delta A-<br>B dB    | 0.04 | 0.04 | 0.03 | 0.02 | 0.08 | 0.15 | 0.65 | 0.63                 |
| Isolation<br>A-B dB | 43.8 | 44.5 | 44.7 | 44.5 | 44.6 | 45.0 | 44.0 | 1.2                  |



Test set

## Material N30 AI 10000 binocular two 6 turns parallel wire Wire not twisted



N30 6+6 turn untwisted wires Port B output



N30 6+6 turns untwisted isolation Port A versus B (common terminated 50 Ohms)



Graph. 3 N30 4+4 turns twisted Port A output







N30 4+4 turns twisted isolation Port A versus B (common terminated 50 Ohms)

| Freq<br>MHz         | 1    | 1.8  | 10   | 20   | 30   | 50    | 100  | Delta<br>value<br>dB |
|---------------------|------|------|------|------|------|-------|------|----------------------|
| Port A<br>dB        | 6.10 | 6.10 | 6.11 | 6.14 | 6.14 | 6.14  | 6.10 | 0.04                 |
| Port B<br>dB        | 5.90 | 6.00 | 6.00 | 6.00 | 6.03 | 6.07  | 6.09 | 0.10                 |
| Delta A-<br>B dB    | 0.11 | 0.10 | 0.11 | 0.14 | 0.11 | 0. 07 | 0.01 | 0.13                 |
| Isolation<br>A-B dB | 41.0 | 42.6 | 43.3 | 42.5 | 42.1 | 41.9  | 42.6 | 2.3                  |

N30 AI 10000 Twisted 4+4

This configuration shows a greater imbalance between A and B would probably not accurate due to the twisting of the wires, but a greater linearity as a function of frequency. The isolation between A and B loses about 2 dB.

### **Final Version**

A good compromise for the final version is to use a transformer with 5 twisted turns.

| Freq<br>MHz         | 1    | 1.8  | 10   | 20   | 30   | 50   | 100  | Delta<br>value<br>dB |
|---------------------|------|------|------|------|------|------|------|----------------------|
| Port A<br>dB        | 6.07 | 6.07 | 6.07 | 6.09 | 6.10 | 6.08 | 6.04 | 0.06                 |
| Port B<br>dB        | 6.00 | 6.00 | 6.01 | 6.06 | 6.12 | 6.18 | 6.60 | 0.60                 |
| Delta A-<br>B dB    | 0.07 | 0.07 | 0.06 | 0.03 | 0.02 | 0.10 | 0.56 | 0.54                 |
| Isolation<br>A-B dB | 45.6 | 47.7 | 48.3 | 47.8 | 47.7 | 49.7 | 54.0 | 7.6                  |

N30 AI 10000 Twisted 5+5

This configuration have:

- Isolation min. 45 dB
- Flattness port A = 0.06 dB
- Flattness Port B = 0.60 dB
- Loss mismatch A vs B = 0.56 dB ( 0-30 MHz = 0.07 dB)
- Delta loss Port A vs B max = 0.54 dB ( 0-50 MHz = 0.08 dB)



It's done



Lab.

author: Luciano P. S. Paramithiotti